Computational Geometry

Semester IV	Subject Code: BS41603	Lectures: 60

Objectives:

The syllabus aims in equipping students with,

- Understanding mathematical base of computer graphics and animation
- Solid foundation in the field and to study some applications of Computational Geometry

Unit 1: Tw	o dimensional transformations	16
•	Representation of points	
•	Transformations and matrices	
•	Transformation of points	
	Transformation of straight lines	
•	Midpoint transformation	
•	Transformation of parallel lines	
•	Transformation of intersecting lines	
•	Transformation, rotations, reflections, scaling, shearing	
•	Combined transformations	
•	Transformation of a unit square	
•	Solid body transformations	
•	Transformation and homogeneous coordinates, Translation	
•	Rotation about an arbitrary point	
•	Reflection through an arbitrary line	
	Projection – a geometric interpretation of homogeneous coordinates	
	Overall Scaling	
•	Point at infinity	

t 2: 1 n	ree dimensional transformations	16
•	Introduction	
•	Three dimensional –Scaling, shearing, rotation, reflection, translation	
•	Multiple transformations	
•	Rotation about – an axis parallel to coordinates axes, an arbitrary axis in space	
	Reflection through – coordinates planes, planes parallel to coordinate planes, arbitrary planes	
•	Affine and perspective transformations	
•	Orthographic projections	
•	Axonometric projections	
•	Oblique projections	
	Single point perspective transformations	
•	Vanishing points	

Unit 3: Pla	ne Curves	10
•	Introduction	
•	Curve representation	
•	Non – parametric curves	
•	Parametric curves	
•	Parametric representation of a circle and generation of circle	
•	Parametric representation of an ellipse and generation of ellipse	
•	Parametric representation of a parabola and generation of parabolic Segment	
•	Parametric representation of a hyperbola and generation of hyperbolic segment.	

Jnit 4: Space curve	
 Bezier Curves – Introduction, definition, properties (without proof) Curve fitting (upto n = 3) equation of the curve in matrix form (upto n = 3) 	
B Spline Curve-Introduction, definition and properties(without proof)	

*Contact hours - 12 hours

Reference Books:

- 1. D. F. Rogers, J. A. Adams, *Mathematical elements for Computer graphics*, Sec ond edition, Mc Graw Hill Intel Edition.
- 2. Schaum Series, Computer Graphics.
- 3. Donald Hearn, M. Pauline Baker, *Computer Graphics C Version*, Second edition, Pearson

