Analog System

Semester- III Subject Code: BS31606 Lectures: 60

Objectives:

The syllabus aims in equipping the students,

- To understand basics of analog electronics
- To study different types of sensors and discuss their role in electrical and electronic system.
- To understand different types of signal conditioning circuits
- Discuss the need for interfacing circuitry to make the signals produced by sensors, compatible with the system to which they are connected.
- To learn data conversion techniques
- To apply knowledge of analog systems in different applications

it 1: Analog Electronic System	14
 Introduction of analog electronic systems. Definition of sensors and transducers. Classification of sensors: Active and passive sensors. Specifications of sensors: Accuracy, range, linearity, sensitivity, resolution, reproducibility. 	* *
• Temperature sensors LM-35, Thermocouple, pH sensor, optical sensor (LDR), Passive Infrared sensor (PIR), Accelerometer sensor, LVDT, tilt sensor, touch screen sensor(Capacitive type), ultrasonic sensor.	

Unit 2: Signal Conditioning	14
 Introduction to signal conditioning, Signal conditioning of passive sensors using Wheatstone's bridge, Level Shifter, Amplification: Inverting and non inverting Amplifier. Instrumentation amplifier: Three OP-amp configurations. Filters: active and passive filters, Concept of Order of filters. Working principle of Single order Op-Amp based Low Pass Filter, High Pass Filter, Band Pass Filter, Notch Filter, and Band reject filter. 	,

nit 3: Data Converters	12
 Need of data convertors. Digital to Analog Converter (DAC): Resistive divider, R-2R ladder, Parameters: Linearity, resolution, accuracy, full-scale output voltage. Analog to Digital Converter (ADC): Types of ADC- Flash, Successive approximation, dual slope, Parameters of ADC: Linearity, resolution, conversion time, accuracy. Applications of DAC and ADC. 	

Unit 4: Case studies	1	8
 Temperature monitoring Intruder detector system Water Level Indicator system Electrocardiograph system 	using PIR sensor ystem using float switch	

*Contact hours - 12 hours

Recommended Text / Reference Books:

- 1. Dr. A. D. Shaligram, Sensors & Transducers, CTC publications.
- 2. Ramakant Gaikwad, Op-Amps and Linear Integrated Circuits, PHI: 4th Ed.
- 3. H. S. Kalsi, *Electronic Instrumentation*, TMH: 2nd Ed.
- 4. Albert D. Helfrick, William D. Cooper, *Modern Electronic Instrumentation and Measurement Techniques*, PHI publications
- 5. K.A. Bakshi, A. V. Bakshi and U. A. Bakshi, *Electronic measurements*, Technical publications.
- 6. A.K. Sawhney: Dhanpat Rai & Sons, A Course in Electrical and Electronic measurements and Instrumentation, Educational & technical publishers.
- R. Khandpur, Handbook of Biomedical instrumentation, Tata McGraw Hill Publications 2003.

