Digital System Design | Semester: III | Subject Code: BS31605 | Lectures: 60 | | |--|-----------------------|--------------|--| | The state of s | | | | ## **Objectives:** The syllabus aims in equipping the students, - To study the applications of logic gates. - To use K-maps for digital circuit design. - To study computer organization - To study and understand basics of microprocessors. | Unit 1: Introduction to digital circuit design | | |---|--| | Examples of digital system and their design. Concept of excitation table and state table, Circuit design of 3-bit up counter, Chocolate vending machine. | | | nit 2: Memory | 16 | |--|----| | Classification of memory (semiconductor), Memory Parameters (Access
time, capacity, cost), | | | Memory Architecture, Static RAM cell and Dynamic RAM cell, | | | Chip arrangement and concept of memory maps | | | Memory Hierarchy | | | Associative memory, Block diagram, Read/Write data in Associative
memory, match logic for single bit | | | • Cache memory need, Hit and miss ratio with calculation. Need for mapping and mapping techniques used in cache | | | Virtual memory: need of virtual memory, Pages and blocks, segment
,mapping techniques for virtual memory(Paging, Segmentation) | | | Unit 3: CPU Organization | | |--|--| | Block Diagram of CPU ,Concept of ALU, one stage AL and shift unit Register organization in CPU: Special Function Registers -SP,PC, instruction register, MAR, MBR, DR, AC, General Purpose Registers Timing and control unit. Need of a bus, types of buses in CPU and function | | | nit | 4: I/O organization | 12 | |-----|---|----| | • | Need of I/O interface, Block diagram of a general parallel I/O interface Types of I/O, Programmed I/O, Interrupt initiated I/O (Daisy chain, polling, | | | • | parallel priority). DMA: Needs of DMA, Types of DMA transfer, DMA controller and process of DMA transfers. | | | | | | | Jnit 5: Introduction to microprocessor | | |--|---| | Block diagram of microprocessor. | | | Evolution: address bus, data bus, speed, presence of cache, pipelines, on
chip coprocessor. Comparison of processors on basis of above features. | | | Harvard and Von Neumann architecture | | | RISC and CISC processor | | | Pipelining concept | | | Concept of multicore | | | Case study of Pentium processor | 1 | | Comparison of Desktop, Laptop, Tablet- similarities and differences. | 2 | ## *Contact hours - 12 hours ## **Reference Books:** - R. P. Jain, Fundamental of Digital Electronics - M. Morris Mano, *Digital design*, Prentice-Hall of India - Morris Mano, Computer System Architecture, Prentice-Hall of India - James Antonakos, The Pentium Microprocessor - Barry B Brey, The Intel Microprocessors, Pearson Education Asia