Digital System Design

Semester: III	Subject Code: BS31605	Lectures: 60	
The state of the s			

Objectives:

The syllabus aims in equipping the students,

- To study the applications of logic gates.
- To use K-maps for digital circuit design.
- To study computer organization
- To study and understand basics of microprocessors.

Unit 1: Introduction to digital circuit design	
 Examples of digital system and their design. Concept of excitation table and state table, Circuit design of 3-bit up counter, Chocolate vending machine. 	

nit 2: Memory	16
 Classification of memory (semiconductor), Memory Parameters (Access time, capacity, cost), 	
 Memory Architecture, Static RAM cell and Dynamic RAM cell, 	
Chip arrangement and concept of memory maps	
Memory Hierarchy	
 Associative memory, Block diagram, Read/Write data in Associative memory, match logic for single bit 	
• Cache memory need, Hit and miss ratio with calculation. Need for mapping and mapping techniques used in cache	
 Virtual memory: need of virtual memory, Pages and blocks, segment ,mapping techniques for virtual memory(Paging, Segmentation) 	

Unit 3: CPU Organization	
 Block Diagram of CPU ,Concept of ALU, one stage AL and shift unit Register organization in CPU: Special Function Registers -SP,PC, instruction register, MAR, MBR, DR, AC, General Purpose Registers Timing and control unit. Need of a bus, types of buses in CPU and function 	

nit	4: I/O organization	12
•	Need of I/O interface, Block diagram of a general parallel I/O interface Types of I/O, Programmed I/O, Interrupt initiated I/O (Daisy chain, polling,	
•	parallel priority). DMA: Needs of DMA, Types of DMA transfer, DMA controller and process of DMA transfers.	

Jnit 5: Introduction to microprocessor	
Block diagram of microprocessor.	
 Evolution: address bus, data bus, speed, presence of cache, pipelines, on chip coprocessor. Comparison of processors on basis of above features. 	
 Harvard and Von Neumann architecture 	
RISC and CISC processor	
Pipelining concept	
Concept of multicore	
Case study of Pentium processor	1
 Comparison of Desktop, Laptop, Tablet- similarities and differences. 	2

*Contact hours - 12 hours

Reference Books:

- R. P. Jain, Fundamental of Digital Electronics
- M. Morris Mano, *Digital design*, Prentice-Hall of India
- Morris Mano, Computer System Architecture, Prentice-Hall of India
- James Antonakos, The Pentium Microprocessor
- Barry B Brey, The Intel Microprocessors, Pearson Education Asia

