Mathematical approach to Algorithms

Semester III	Subject Code: BS31603	Lectures: 60

Objectives:

The syllabus aims in equipping students with,

- Understanding concepts related to the design and analysis of algorithms
- Ability to understand and apply algorithms using greedy, divide and conquer approach
- Understanding graph theoretic algorithms with mathematical approach
- Mathematical approach to algorithm solving.
- Opportunity to study distribution of prime number and elementary primality algorithms.

Unit 1: Introduction and Design		4
Chapter 1: Introduction to algorithm	,1	
Introduction to algorithm		
 Definition ,characteristics and examples 		# # # # # # # # # # # # # # # # # # #
Chapter 2 : Design strategies		
 Definition 		
 Types of strategies 		
 Examples 		

Unit 2: Divide and Conquer strategy	
 Introduction to Divide and Conquer strategy. Control abstraction 	
Binary search	
 Finding the Minimum and Maximum from the given list. 	
 Kth smallest element from list 	
 Convex hull 	

nit 3: Greedy Algorithm	
Introduction to greedy method	
 Control abstraction 	
Knapsack Problem	
 Job sequencing with dead line 	
 Optimal storage on tapes 	
Optimal merge pattern	
Huffman Code	
• All pairs shortest path.	

Unit 4: Graph theoretic algorithms	12
• BFS	
• DFS	
Topological sorting	
 Strongly connected components 	
Numerical problems	

Init 5: Algorithms on Prime numbers	06
Definition and examples	
 Density of Prime numbers and Prime number theorem 	
 Sieve of Eratosthenus test 	
 Pseudo Prime(Definition and examples) 	
Miller-Rabin test	
 Solovey- Strassen's test and applications 	

*Contact hours - 12 hours

Reference Books:

- 1. Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, Clifford Stein, *Introduction to Algorithms*, Third Edition, MIT Press
- 2. , Ellis Horowitz, Sartaj Sahni, Sanguthevar Rajasekaran, *Fundamentals of Computer Algorithms*, Galgotia publication pvt. Ltd.
- 3. David M. Burton, *Ele mentary Number theory-2nd edition*, McGraw-Hill(Chapt 3-3.1 and 3.2)
- 4. Neil Koblitz, A course in number theory and cryptography, second edition, Springer
- 5. Dr. Prof. Nivedita Mahajan, A first step in DAA.

