Data Structures using 'C'

Semester – III	Subject Code: BS31601	Lectures: 60

Objectives:

The syllabus aims in equipping students,

- To learn the systematic way of solving problem
- To understand the different methods of organizing large amount of data
- To efficiently implement the different data structures
- To efficiently implement solutions for specific problems

Unit 1: Data structure concepts		12
1. Introduction to data structures		
 Concept 		
Data Type	7	
 Data Object, data structures 		
 Abstract data type (ADT) 		
Definition		
> Operation		
Examples on rational number	*	
 Need of Data Structure 		
 Types of Data Structure 		
[Ref. book 1- Chapter 3]		
[Ref. book 2- Chapter 1]		
2. Algorithm analysis		
 Space complexity, time complexity (definition, 	simple example)	
• Asymptotic notation (Big O, Omega Ω , Theta θ)- Examples on each	
notation		
[Ref. book 2- Chapter 1]		
3. Searching and Sorting Techniques		
· Searching techniques (Linear Search, Binary se	earch with efficiency)	
· Sorting algorithms, characteristics with efficient		
(Bubble sort, Insertion sort, Merge sort, Qu		
comparison)		
[Ref. book 1- Chapter 10]		
[Ref. book 2- Chapter 7]		
[Ref. book 3- Chapter 6,7]		

Unit 2:	Linear Data Structures	17
4. Link	ed List	
•	Introduction to Linked List	
•	Implementation of Linked List	
	> Static representation (concept only)	
	Dynamic representation	
•	Types of Linked List	
	Singly	
	Doubly	
	> Circular	
•	Operations on Linked List	
	(create, display, insert, delete, reverse, and search)	
•	Application of Linked List (polynomial addition (using one variable))	
	[Ref. book 1- Chapter 5]	
	[Ref. book 2- Chapter 4]	
	[Ref. book 3- Chapter 4]	
5. Stac	k	
•	Introduction	
•	Representation	
	> Static	
	> Dynamic	
	Operations (push, pop, isempty and isfull)	1 3
	Infix, prefix(polish notation) and postfix(reverse polish notation) expressions	
•	Applications	
	infix to postfix conversion	
	> postfix evaluation	
	[Ref. book 1- Chapter 6]	
	[Ref. book 2- Chapter 3]	
6. Que		
•	Introduction	
•	Representation	
	> Static	
	> Dynamic	
•	Operations (add, remove, isempty and isfull)	
•	Types of queue	
	Circular queue (static implementation)	
	Priority queue (with implementation)	
	Doubly ended queue(concept only)	
	[Ref. book 1- Chapter 7]	
	[Ref. book 2- Chapter 3,9]	

Unit 3: Non linear Data structures	
7. Trees	
 Concept and Terminologies 	
 Binary tree, binary search tree(BST) 	
BST representation	
> Static	
Dynamic	
 Operations on BST (create, insert, traversals (preorder, inorder, 	
postorder), counting leaf, non-leaf and total nodes)	
 Application - Heap sort (example only) 	
Height balanced tree	
➤ AVL trees(definition, rotations and examples)	
[Ref. book 1- Chapter 8]	
[Ref. book 2- Chapter 5]	
3. Graph	
 Graph Representation (Adjacency matrix, adjacency list, inverse adjacency list, adjacency multilist) 	
• Traversals (BFS and DFS)	
 Applications 	
➤ AOV network – topological sort (example only)	
➤ AOE network – critical Path (example only)	
[Ref. book 1- Chapter 9]	
[Ref. book 2- Chapter 6]	

Recommended Books:

- 1. E. Balagurusamy, Data Structures using C, Tata Macgraw Hill Education
- 2. Horowitz, Sahani and Anderson-Freed, *Fundamentals of Data Structures in C*, 2nd Edition, Universities Press
- 3. Yedidyah Langsam, Aaron M. Tenenbaum, Moshe J. Augenstein, *Data Structures using C*, Second Indian print, Pearson Education
- 4. Ashok Kamthane, Introduction to Data Structures using C, Pearson Education

