Data Structures using 'C' | Semester – III | Subject Code: BS31601 | Lectures: 60 | |----------------|-----------------------|--------------| | | | | ## **Objectives:** The syllabus aims in equipping students, - To learn the systematic way of solving problem - To understand the different methods of organizing large amount of data - To efficiently implement the different data structures - To efficiently implement solutions for specific problems | Unit 1: Data structure concepts | | 12 | |--|------------------------|----| | 1. Introduction to data structures | | | | Concept | | | | Data Type | 7 | | | Data Object, data structures | | | | Abstract data type (ADT) | | | | Definition | | | | > Operation | | | | Examples on rational number | * | | | Need of Data Structure | | | | Types of Data Structure | | | | [Ref. book 1- Chapter 3] | | | | [Ref. book 2- Chapter 1] | | | | 2. Algorithm analysis | | | | Space complexity, time complexity (definition, | simple example) | | | • Asymptotic notation (Big O, Omega Ω , Theta θ |)- Examples on each | | | notation | | | | [Ref. book 2- Chapter 1] | | | | 3. Searching and Sorting Techniques | | | | · Searching techniques (Linear Search, Binary se | earch with efficiency) | | | · Sorting algorithms, characteristics with efficient | | | | (Bubble sort, Insertion sort, Merge sort, Qu | | | | comparison) | | | | [Ref. book 1- Chapter 10] | | | | [Ref. book 2- Chapter 7] | | | | [Ref. book 3- Chapter 6,7] | | | | Unit 2: | Linear Data Structures | 17 | |---------|---|-----| | 4. Link | ed List | | | • | Introduction to Linked List | | | • | Implementation of Linked List | | | | > Static representation (concept only) | | | | Dynamic representation | | | • | Types of Linked List | | | | Singly | | | | Doubly | | | | > Circular | | | • | Operations on Linked List | | | | (create, display, insert, delete, reverse, and search) | | | • | Application of Linked List (polynomial addition (using one variable)) | | | | [Ref. book 1- Chapter 5] | | | | [Ref. book 2- Chapter 4] | | | | [Ref. book 3- Chapter 4] | | | 5. Stac | k | | | • | Introduction | | | • | Representation | | | | > Static | | | | > Dynamic | | | | Operations (push, pop, isempty and isfull) | 1 3 | | | Infix, prefix(polish notation) and postfix(reverse polish notation) expressions | | | • | Applications | | | | infix to postfix conversion | | | | > postfix evaluation | | | | [Ref. book 1- Chapter 6] | | | | [Ref. book 2- Chapter 3] | | | 6. Que | | | | • | Introduction | | | • | Representation | | | | > Static | | | | > Dynamic | | | • | Operations (add, remove, isempty and isfull) | | | • | Types of queue | | | | Circular queue (static implementation) | | | | Priority queue (with implementation) | | | | Doubly ended queue(concept only) | | | | [Ref. book 1- Chapter 7] | | | | [Ref. book 2- Chapter 3,9] | | | Unit 3: Non linear Data structures | | |--|--| | 7. Trees | | | Concept and Terminologies | | | Binary tree, binary search tree(BST) | | | BST representation | | | > Static | | | Dynamic | | | Operations on BST (create, insert, traversals (preorder, inorder, | | | postorder), counting leaf, non-leaf and total nodes) | | | Application - Heap sort (example only) | | | Height balanced tree | | | ➤ AVL trees(definition, rotations and examples) | | | [Ref. book 1- Chapter 8] | | | [Ref. book 2- Chapter 5] | | | 3. Graph | | | Graph Representation (Adjacency matrix, adjacency list, inverse
adjacency list, adjacency multilist) | | | • Traversals (BFS and DFS) | | | Applications | | | ➤ AOV network – topological sort (example only) | | | ➤ AOE network – critical Path (example only) | | | [Ref. book 1- Chapter 9] | | | [Ref. book 2- Chapter 6] | | | | | ## Recommended Books: - 1. E. Balagurusamy, Data Structures using C, Tata Macgraw Hill Education - 2. Horowitz, Sahani and Anderson-Freed, *Fundamentals of Data Structures in C*, 2nd Edition, Universities Press - 3. Yedidyah Langsam, Aaron M. Tenenbaum, Moshe J. Augenstein, *Data Structures using C*, Second Indian print, Pearson Education - 4. Ashok Kamthane, Introduction to Data Structures using C, Pearson Education