Computer Science Paper II Machine Learning [Compulsory Course]

Semester: III	Credits: 4	Subject Code: MS32002	Lectures: 48	
---------------	------------	-----------------------	--------------	--

Course Outcomes:

At the end of this course, the learner will be able to:

- · Recognize the characteristics of machine learning
- Develop an ability to estimate machine learning model efficiency using suitable metrics
- Evaluate real world problems using different machine learning techniques
- Process data using libraries and predict the outcome using machine learning algorithms
- Construct a machine learning model to solve real world problem.

Unit 1: Importance of Machine Learning		
• (Chapter 1: Introduction to Machine Learning	6
	Data Science, Artificial Intelligence and Machine Learning	
	Why Learn and What is Learning, What is Machine Learning? Traditional	
	Programming Vs. Machine Learning, Machine Learning Process, Types of	
	Data, Key Elements of Machine Learning (Representation, Evaluation and	
	Optimization), Dimensionality Reduction (Feature Reduction)	
	Types of analytics: Descriptive, Diagnostic, Inferential and Prescriptive	
	Descriptive and Inferential Statistics: Probability, Distribution, Distance	
	Measures (Euclidean and Manhattan), Correlation and Regression,	
	Hypothesis Testing.	5
C	Creating our own dataset, Importing the dataset, Handling Missing Data,	
	Splitting the dataset into the Training set and Test set, Feature Scaling	
• (Chapter 2: Machine Learning Models	
C	Type of Learning- Supervised, Unsupervised and Reinforcement Learning	
C		
	overfitting)	
C	A Learning System Cycle and Design Cycle Metrics for evaluation viz.	
	accuracy, scalability, squared error, precision and recall, likelihood,	
	posterior probability	
C	Classification Accuracy and Performance	

Board Of Studies	Name	Signature
Chairperson(HoD)	Ashwini Kulkarni	alw_

Unit 2: Supervised Learning		
• Cl	apter 3: Regression Models	6
0	Linear Regression - Simple, Multiple, Polynomial	
0	Non-linear Regression - Decision Tree, Support Vector, Random Forest	
Cl	apter 4: Classification Models	
0	K – Nearest Neighbours (KNN)	10
0	Logistic Regression	
0	Naive Bayes Theorem	
0	Support Vector Machine	
0	Decision Forest Classification	
0	Random Tree Classification	
• Cl	apter 5: Clustering Models	6
0	K-means	
0	Hierarchical Clustering (Agglomerative, Divisive), Dendrogram	
0	Selecting optimal number of clusters: Within Clusters Sum	
0	of Squares (WCSS) by Elbow Method	

8 St. MIRA'S

Unit 3: Unsupervised Learning	
 Chapter 6: Association Rules Key Terms: Support, Confidence and Lift Large Item Set Apriori Algorithm Measuring the quality of association rules 	5

Uı	Unit 4: Reinforcement Learning		5
•		apter 7: Reinforcement Learning Upper Confidence Bound (UCB)	5
		Thompson Sampling	
	0	Q-Learning	

Unit 5: Artificial Neural Network		5	
•	Chapter 8: Artificial Neural Network		5
	 Introduction to Artificial Neural Network 		
	 Architecture of ANN 		
	 Introduction to Deep learning 		

Contact Hours: 12 Hrs.

Board Of Studies	Name	Signature
Chairperson(HoD)	Ashwini Kulkarni	Oly

Reference Books:

- Andriy Burkov , The Hundred-Page Machine Learning Book , Andriy Burkov
- Andreas C Muller and Sarah Guido, Introduction to Machine Learning with Python, Orielly
- Friedman, Jerome, Trevor Hastie, and Robert Tibshirani, The elements of statistical learning, Vol.1. Springer
- Rogers, Simon, and Mark Girolami. A first course in machine learning, CRC Press, 20
- Sutton, Richard S., and Andrew G. Barto, Reinforcement learning: An introduction, Vol.1. No. 1. Cambridge: MIT press
- Tom M Mitchell, Machine Learning, MC Graw Hill Education publication(Indian Edition)

Board Of Studies	Name	Signature	(in white)
Chairperson(HoD)	Ashwini Kulkarni	01/2/25/7/20	
Faculty	Smita Borkar		Manzino
Faculty	Shubhangi Jagtap	Churcharge	
Faculty	Swati Pulate	25/04/20	3/1/10
Faculty	Alka Kalhapure	Alla 25/07/20	
Subject Expert(Outside SPPU)	Dr. Manisha Divate		Washington
Subject Expert(Outside SPPU)	Prof. Aniket Nagne	an vo	
VC Nominee (SPPU)	Dr. Manisha Bharambe	<i>\(\frac{\partial}{\partial}\)</i>	Mehanambe 25/07/20
Industry Expert	Ms. SnehalBiyala	Bullarin 25/17/20	
Alumni	Ms. Mamta Choudhary		Jun 25/7/20

Board Of Studies	Name	Signature
Chairperson(HoD)	Ashwini Kulkarni	de