Design and Analysis of Algorithms

Semester I Subject Code: MS11902

Learning Outcomes:

After completion of this subject, the student shall be able to:

- Understand Basic Algorithm Analysis techniques and the use asymptotic notation
- > Understand the use of data structures in improving algorithm performance
- > The use of different paradigms of problem solving will be used to illustrate clever and efficient ways to solve a given problem
- > Apply the algorithms and design techniques to solve problems
- Analyze the complexities of various problems in different domains

Design and Analysis of Algorithms

Semester I Subject Code: MS11902 Lectures: 60

Objectives:

The syllabus aims in equipping students with,

- Basic Algorithm Analysis techniques and understand the use of asymptotic notation
- Understand different design strategies
- > Understand the use of data structures in improving algorithm performance
- > Understand classical problem and solutions
- > Learn a variety of useful algorithms
- Understand classification of problems

Unit 1: Analysis		6
•	Algorithm definition, space complexity, time complexity, worst case –best case –average case complexity, asymptotic notation	6
•	Sorting algorithms (insertion sort, heap sort) ,recursive algorithms (Tower of Hanoi, Permutations).	

Unit 2:	Design strategies	8
	 Divide and conquer-control abstraction, ternary search, Strassen's matrix (2X2) 	4
	 Transform and conquer:- Horner's Rule and Binary Exponentiation – Problem Reduction 	4

BOS Members:

Prof. Seema Chowhan (Subject Expert)

Prof. M.B. Lonare (Subject Expert)

Ms. Shilpa Khadilkar (Subject Expert)

Ms Anuradha Bhamre (Industry Expert)

Ms Aishwarya Kaliyiluvila (Alumni)

Prof. Ashwini Kulkarni (Chairman)

Prof. Alka Kalhapure (Internal Faculty)

Prof. Swati Pulate (Internal Faculty)

Applied ...

Unit 3: Greedy method	Marie Taxania Marie (1997)	* (4	8
 Knapsack problem Job sequencing with deadlines Minimum-cost spanning trees Kruskal and Prim's algorithm 			

Unit 4:	Dynamic programming	10
	Matrix chain multiplication	
	 Single source shortest paths 	
	 Bellman- ford algorithm 	
	 All pairs shortest path 	
	 Longest common subsequence 	
	 String editing 	
	 0/1 knapsack problem 	
	 Traveling salesperson problem. 	
	Multistage Graphs	
Unit 5:	Backtracking	4
	General method	
	8 Queen's problem	
	 Sum of subsets problem 	
	 Graph coloring problem 	
	Hamiltonian cycle	
Unit 6:	Branch and Bound Technique	4
	• FIFO, LIFO	
	• LCBB	
	TSP problem	-
	• 0/1 knapsack problem	
	Problem classification	5

BOS Members:

Prof. Seema Chowhan (Subject Expert)

Prof. M.B. Lonare (Subject Expert)

Ms. Shilpa Khadilkar (Subject Expert)

Ms Anuradha Bhamre (Industry Expert)

Ms Aishwarya Kaliyiluvila (Alumni)

Prof. Ashwini Kulkarni (Chairman)

Prof. Alka Kalhapure (Internal Faculty)

Prof. Swati Pulate (Internal Faculty)

Autwariork

Mira's College For

 Nondeterministic algorithm The class of P,NP, NP-hard and NP- Complete problems Significance of Cook's theorem NCDP,M-chromatic Halting Problem 	
Unit 8: Parallel, Concurrent and Distributed Algorithm	
Parallel Algorithm-Primes	
Concurrent Algorithm	
 Distributed Algorithm-Floyds-Warshall 	

*Contact hours - 12 hours

Reference Books:

- Ellis Horowitz, Sartaj Sahni & Sanguthevar Rajasekaran, Computer Algorithms, Galgotia.
- 2. T. Cormen, C. Leiserson, & R. Rivest, Algorithms, MIT Press, 1990 1
- 3. A. Aho, J. Hopcroft, & J. Ullman, *The Design and Analysis of Computer Algorithms*, Addison Wesley, 1974
- 4. Donald Knuth, *The Art of Computer Programming* (3 vols., various editions, 1973-81), Addison Wesley

BOS Members:

Prof. Seema Chowhan (Subject Expert)

Prof. M.B. Lonare (Subject Expert)

Ms. Shilpa Khadilkar (Subject Expert)

Ms Anuradha Bhamre (Industry Expert)

Ms Aishwarya Kaliyiluvila (Alumni)

Prof. Ashwini Kulkarni (Chairman)

Prof. Alka Kalhapure (Internal Faculty)

Prof. Swati Pulate (Internal Faculty)

S.V.K

