

Semester: II	Credits:2	Subject Code: BS22008	Lectures: 40

Course Outcomes:

At the end of this course, the learner will be able to:

- Analyze, design and implement sequential logic circuit.
- Classify different semiconductor memories; Recognize the principal memory technologies from a hierarchical view point with emphasis on cache memory.
- Identify and explain different parts of CPU and I/O devices, organize them according to their function.

Unit 1: Sequential Circuits	
 Flip flops: RS using NAND gate, clocked RS Flip-flop, J-K, Delay (D) and Toggle (T). 	0
• 3-bit Asynchronous Up and Down Counter with timing diagrams.	
Concept of excitation table and state table	
 Design of 3-bit synchronous up counter and down counter. 	
 Modulus of counters, Decade counters. 	
Ring counter, with appropriate timing diagrams,	
 Shift registers: SISO, SIPO, PISO, PIPO shift registers, universal 4-bit shift register and Applications. 	

Unit 2: Memory Organization	10
 Classification of memory (semiconductor), Memory Parameters (Access time, capacity, cost), Memory Architecture, 	
 Static RAM cell and Dynamic RAM cell, Diode Matrix ROM, Flash Memory. Vertical and Horizontal Memory Expansion 	
Memory hierarchy, Role of Cache Memory, concept of Virtual Memory	

Unit 3: Basics of Computer System		12
•	Block diagram of computer system, Concept of Address Bus, Data Bus, Control Bus	
•	CPU block diagram and explanation of each block	
•	General register organization, Concept of memory and register stack and its organization, SCSI	
•	I/O organization, Need of I/O interface, block diagram of general I/O Interface.	

Board Of Studies	Name	Signature
Chairman (HoD)	Swatee Sarwate	Swall Sawall

Basic Reading:

- Floyd T.M., Jain R.P., Digital Fundamentals: Pearson Education
- M.Morris Mano, Computer System Architecture, Pearson Education

Reference Books:

- Jain R.P., Digital Electronics: Tata McGraw Hill
- Malvino Leach, Digital Principles and Applications, Tata McGraw-Hill.
- William Stallings, Computer Organization and Architecture, William Stallings, Prentice Hall India

Websites:

- https://www.csun.edu/~rd436460/DigitalElectronics/Chapter%205.pdf
- https://computer.howstuffworks.com/computer-memory2.htm
- https://en.wikipedia.org/wiki/Memory_address
- https://www.geeksforgeeks.org/introduction-of-general-register-based-cpu-organization/

E-Resources:

- NPTEL lecture series- Electronics-Digital Circuits and Systems by Prof. S. Srinivasan IITMadras, 16 to 26 on YouTube
- https://www.youtube.com/watch?v=m1QBxTeVaNs Difference between FF & latch
- YouTube video on horizontal and vertical memory expansion https://www.youtube.com/watch?v=iyTxhDPPBXA

Contact Hours: 12 hours for Library work, practical or field work or research purposes

Board Of Studies	Name	Signature (in white cell)	
Chairman (HoD)	Swatee Sarwate	Swaler convale	
Subject Expert (Internal)	Anitha Menon	P.A + 22/1/21	
Subject Expert (Outside SPPU)	Dr. R.K.Kamat	Rhuma	
Subject Expert (Outside SPPU)	Dr. Sangeeta Kale	=nal	
VC Nominee (SPPU)	Dr. Neha Deshpande	18 x Dispande 120	
Industry Expert	Amber Mukherjee	Jan 120	
Alumni	Supriya Palande	#alale 1/20 Feder	

Board Of Studies	Name	Signature
Chairman (HoD)	Swatee, Sarwate	(wall canale