

Semester: II Credits:2 Subject Code:BS22007 Lectures: 40

Course Outcomes:

At the end of this course, the learner will be able to:

MIR

Define different OPAMP parameters, comparison of ideal and practical parameters. Identify and discuss OPAMP Applications

- To classify different types of ADC and DAC, apply the knowledge of conversion of digital to analog and vice-versa
- Explain working principle of sensors and transducers and their classification, Identify and apply the knowledge of sensors in smart instrumentation system

Unit 1: Operational Amplifier	
 Symbol, block diagram of op amp, Op amp characteristics, basic parameters(ideal and practical) such as input and output impedance, bandwidth, differential and common mode gain, CMRR, slew rate, Specification of IC741 concept of negative feedback, Concept of virtual ground, Op amp as inverting and non-inverting amplifier Applications of Op amp as voltage follower, adder, subtractor, and comparator. 	

Unit 2 : Data Converters	
 Digital to Analog converters, Need of DAC and its parameters, weighted resistor network, R-2R ladder network, Analog to Digital converters, need of ADC and its parameters Flash ADC, successive approximation ADC 	

Unit 3: Instrumentation System	15
Block diagram of smart instrumentation systems. Definition of sensors and transducers. Classification of sensors: Active and passive sensors.	
Specifications of sensors: Accuracy, range, linearity, sensitivity, resolution, reproducibility.	
Working principle and application of -Temperature sensors (LM-35,Thermistor), optical sensor (LDR), Passive Infrared sensor (PIR), Accelerometer sensor, tilt sensor, touch screen sensor(Capacitive type), ultrasonic sensor, Motion Sensor and Image sensor	

Board Of Studies	Name	Signature
Chairman (HoD)	Swatee Sarwate	Swalesamale

Reference Books:

- Prof A.D. Shaligram, Sensors and Transducers, PHI publication, 2nd Edition
- A. Motorshed, Electronic Devices and circuits:, Prentice Hall of India.
- Bolyestad, Electronic Devices and Circuits:, Tata McGraw Hill.
- Ramakant Gaykwad Op Amp and Linear Integrated Circuits:

Websites:

- https://electronicsforu.com/
- https://www.howstuffworks.com/
- https://www.instructables.com/

E-Resources:

- https://nptel.ac.in/courses/117/103/117103063/
- https://www.youtube.com/watch?v=ZJwCPUp7RfQ
- https://nptel.ac.in/courses/117/106/117106034/
- https://nptel.ac.in/courses/108/108/108108147/
- https://www.youtube.com/watch?v=nSeW3R2hr1A
- https://www.youtube.com/watch?v=W8dA6npX3pk
- https://www.youtube.com/watch?v=vf21W4LkmMQ

Contact Hours: 12 hours for Library work, practical or field work or research purposes

Board Of Studies	Name	Signature (in white cell)	
Chairman (HoD)	Swatee Sarwate	Swale Cawale	
Faculty	Anitha Menon	2.A - 22/1pa	
VC Nominee (SPPU)	Dr. Neha Deshpande	N. K. Dispande	
Subject Expert (Outside SPPU)	Dr. R.K.Kamat	Ruma - 22/1/20	
Subject Expert (Outside SPPU)	Dr. Sangeeta Kale	22/7/20	
Industry Expert	Amber Mukherjee	Jan Halley 2217/28	
Alumni	Supriya Palande	Alle Holde	

Board Of Studies	Name	Signature
Chairman (HoD)	Swatee Sarwate	(valamale