

Mathematics Paper I Graph Theory [CORE COURSE]

Semester: II Credit	s: 2 Subject Code: BS22003	Lectures: 40
---------------------	----------------------------	--------------

Course Outcomes:

At the end of this course, the learner will be able to:

- Know about the new branch of mathematics Graph Theory and its applications which will help to construct a strong foundation in the subject.
- Define graphs, digraphs and trees, and identify their main properties.
- Classify different types of graphs and identify the areas of their applications.
- Formulate and relate real life situations with different types of graphs and techniques used in Graph Theory.
- Describe and apply some basic algorithms for graphs.
- · Demonstrate different traversal methods for trees and graphs.
- Determine the wide nature of the subject through various key concepts in Graph Theory and their real-life applications.

Unit 1: Introduction to Graphs and Operations on Graphs	8
Introduction	
Elementary Terminologies and Results	
o Handshaking lemma	
o Corollary of Handshaking lemma	1
Types of graph	
Isomorphism- Definition and Problems	
Adjacency & Incidence Matrix	
To check degree sequence (Sequence is graphical or not)	
Havel - Hakimi Theorem (Only Statement)	
Subgraphs- Definition, Examples	
Types of subgraphs	
Vertex deleted subgraphs; Edge deleted subgraphs	
Induced subgraphs	
Spanning Subgraphs	
Complement of Graph and Self Complementary graphs	
Union, Intersection and Product of Graphs	
Fusion of vertices, Decomposition	

Un	nit 2: Connected Graphs	9
•	Walk, Trail, Path- Definition, Examples and Properties	

Board Of Studies	Name	Signature
Chairperson (HoD)	Ms. Gitanjali Phadnis	fr. M. Phadmis

- Connected graphs Definition and Properties
- Distance between two vertices, Eccentricity, centre, radius and diameter of a graph
- Isthmus, Cut Vertex- Definition, Examples and Properties
- Edge connectivity, Vertex connectivity
- · Dijkstra's Algorithm

Unit 3: Eulerian and Hamiltonian Graphs	
 Konigsberg Bridges Problem Eulerian Graphs- Definition, Examples, Necessary and Sufficient Condition (with proof) Fleury's Algorithm Hamiltonian Graphs- Definition, Examples and Theorems (2 without Proof) Chinese Postman Problem, Travelling Salesman Problem 	

10

Unit 5: Directed Graphs	
 Definition, Examples, Elementary terminologies and Properties. Types of digraphs. Connectedness of digraphs. Arborescence Networks and Flow, MaxFlow-MinCut theorem, Ford Fulkerson Algorithm 	

Reference Books:

- C. L. Liu, Elements of Discrete Mathematics, Tata McGraw Hill, Fourth Edition
- Douglas B. West, Introduction to Graph Theory, Pearson Education, Second Edition.

Board Of Studies	Name	Signature
Chairperson (HoD)	Ms. Gitanjali Phadnis	G. M. Phadris

- Harary, Graph Theory, Narosa Publishing House Pvt. Ltd., New Delhi, 2013.
- John Clark and Derek Holton, A first look at Graph theory, Allied Publishers.
- Kenneth Rosen, Discrete Mathematics and its applications, Tata McGraw Hill, Seventh Edition.
- Narsingh Deo, Graph Theory with applications to computer science and Engineering, Prentice Hall.

E-Resources:

- https://epgp.inflibnet.ac.in/Home/ViewSubject?catid=25 for Unit 1 to unit 5
- https://nptel.ac.in
- https://swayam.gov.in

Board Of Studies	Name	Signature (in white cell)
Chairperson (HoD)	Ms. Gitanjali Phadnis	h-MPhadris
Faculty	Ms. Vrushali Paranjpe	apung 118/2012
Subject Expert (Outside SPPU)	Dr. Machchhindra Gophane	AP 1/8/2020
Subject Expert (Outside SPPU)	Dr. Prashant Malavadkar	Front 108200
VC Nominee	Dr. Vinayak Joshi	your.
Industry Expert	Mr. Anup Manakeshwar	Manalahwar A
Alumni	Ms.Jyoti Sharma	01/08/2020

Board Of Studies	Name	Signature
Chairperson (HoD)	Ms. Gitanjali Phadnis	la M'Phadris