Electronics Paper-II Principles of Digital Electronics [CORE COURSE]

[CORE COURSE]			
Semester: I	Credits: 2	Subject Code: BS12008	Lectures: 40

Course Outcomes:

At the end of this course, the learner will be able to:

- Define and represent numbers in powers of base and translate one number system to another and solve binary arithmetic problems
- Identify gates, examine and simplify Boolean Algebraic assignments for designing digital circuits using K-Maps
- Analyze, design and construct combinational logic circuit.

Unit 1: Number Systems and Digital Codes	
 Introduction to number system: decimal, Binary, Octal and hexadecimal number systems and their inter conversions 	
 BCD, Gray codes, alphanumeric representation in ASCII codes. 	
 Unsigned and signed binary number representations, Floating point Binary addition and binary subtraction using 2's Complement method 	

Unit 2: Logic Gates and Boolean algebra	
 Concept of logic levels, Logic gates (NOT, AND, OR, NAND, NOR, XOR) with their symbol, Boolean equation and truth table Applications of Ex-OR gates as parity Checker and generator, Digital comparator Boolean algebra rules and Boolean laws: Commutative, Associative, Distributive, AND, OR and Inversion laws, De Morgan's theorem, Universal gates. Simplifications of Logic equations using Boolean algebra rules. Boolean expression in SOP and POS form, conversion of SOP/POS expression to its standard SOP/POS form Introduction to Karnaugh map, problems based on the same (up to 4 variables K map with don't care condition), Digital Designing using K Map for: Gray to Binary and Binary to Gray Conversion. 	

Unit 3: Combinational Circuits	
 Arithmetic circuits: Half adder, full adder, half subtractor, Full subtractor, (circuit realization through k-map), Universal nibble adder /subtractor. Multiplexer: 4:1 MUX (using basic gates & NAND gates) and their applications 	
 De multiplexer -1:4(using basic gates & NAND gates) and their applications Encoders- Decimal to BCD/Binary, 3x4 matrix keyboard encoder, concept of 	

Board Of Studies	Name	Signature
Chairman (HoD)	Swatee Sarwate	Swalegarrate

priority encoder

Decoder-BCDto Decimal,BCD to seven segment decoders

Basic Reading:

- Floyd T.M., Jain R.P, Digital Fundamentals, Pearson Education
- Jain R.P., Tata McGraw Hill , Digital Electronics.

Reference Books:

- G.K.Kharate-Digital Electronics-Oxford University press
- Malvino Leach , Digital Principles and Applications, Tata McGraw-Hill
- M.Morris Mano, "Digital Design "3rdEdition, PHI, New Delhi.
- Ronald J. Tocci. "Digital Systems-Principles and Applications" 6/e. PHI. New Delhi. 1999.(UNITS I to IV)

St. MIR

S.Salivahana & S. Arivazhagan-Digital Circuits and Design

Websites:

- https://circuitglobe.com/number-system-in-digital-electronics.html
- https://www.iitr.ac.in/departments/PH/uploads/Teaching%20Laboratory
- Electronics/5.Intercoversion%20of%20Universal%20Gates%20and%20De
- %20Morgans%0Theorem.pdf
- http://epgp.inflibnet.ac.in/epgpdata/uploads/epgp_content/S000574EE/
- P001494/M015070/ET/1459849221et10.pdf
- https://study.com/academy/lesson/basic-combinational-circuits-types-examples.html

E-Resources:

NPTEL lecture series

https://www.youtube.com/watch?v=CeD2L6KbtVM&list=PL803563859BF7ED8C

- NPTEL lecture series- Electronics-Digital Circuits and Systems by Prof. S. Srinivasan IIT Madras 5,6,7,8,9 on YouTube
- https://www.youtube.com/watch?v=gI-qXk7XojA
- NPTEL lecture series- Electronics-Digital Circuits and Systems by Prof. S. Srinivasan IIT Madras, 3,4,11,13,14

Contact Hours: 12 hours for Library work, practical or field work or research purposes

Board Of Studies	Name	Signature
Chairman (HoD)	Swatee Sarwate	Swalanote

Board of Studies Name		Signature (in white cell)	
Chairman (HoD)	SwateeSarwate	Swale wale The	
Faculty	Anitha Menon		2.4 1/2/1/20
VC Nominee (SPPU)	Dr. Neha Deshpande	N&Dupanole. 22/7/20	
Subject Expert (Outside SPPU)	Dr. R.K.Kamat		Rhuam 9
Subject Expert (Outside SPPU)	Dr. Sangeeta Kale	22/7/20	
Industry Expert	Amber Mukherjee		July 7/20
Alumni	Supriya Palande	February 120	Kalade

Board Of Studies	Name	Signature
Chairman (HoD)	Swatee Sarwate	Swalleconial