

Semester I	Credits: 2	Subject Code: BS12004	Lectures: 40
		l	

Course Outcomes:

At the end of this course, the learner will be able to:

- Describe various relations in Number theory.
- Explain the notion of continuity as related to functions. Learner should be able to relate an intuitive notion of continuity to the mathematical definition of continuity.
- · Compare and contrast the ideas of continuity and differentiability.
- Distinguish between linear, nonlinear, partial and ordinary differential equations.
- · Identify areas in mathematics and other fields where Calculus is useful.
- · Work effectively with others to complete homework and class assignments.

Unit 1: Divisibility	
 Well ordering principles Division Algorithm (without proof) Divisibility and its properties. Euclid's Lemma (Without proof). Definition of G.C.D and L.C.M, Expressing G.C.D of two integers as a linear combination of the two integers. Relatively prime integers, Euclid's Lemma and its generalization. Congruence relation and its properties, Residue Classes: Definition, Examples, addition and multiplication modulo n and composition tables. 	
 Euler's and Fermat's Theorems.(Without proof). Examples 	

Unit 2:Limit, Continuity and Differentiability		
 Introduction: Definition of limits: R.H.L and L.H.L with examples Continuity and properties of continuous functions. Differentiability Intermediate value Theorem (without proof). Rolle's theorem (with proof and geometric interpretation). Lagrange's Mean Value Theorem (with proof). Cauchy's Mean Value theorem (with proof). 		

Board Of Studies	Name	Signature
Chairperson (HoD)	Ms. Gitanjali Phadnis	fini Phadris

Unit 4: First Order Linear Differential Equation	6
 Introduction Problems associated with differential equation Linear differential equation of first order The equations y'+ ay =0 The equation y'+ ay =b(x) The general linear equation of the first order 	

6

Recommended Text Books:

- David M. Burton *Elementary Number Theory*, McGraw-Hill Science/Engineering/Math; 7th Edition February 4, 2010.
 - o Unit 1: chapter 2.2,2.3,2.4,4.2,5.2
- Earl A. Coddington, An introduction to Ordinary Differential Equations., Dover Publication, Inc.
 - o Unit 4,5: Chapter 1, chapter 2.3.1,2.3.2,2.3.3,2.4.1
- Tom M. ApostolCalculus, Vol. 1: One-Variable Calculus, with an Introduction to Linear Algebra January 16, 1991.
 - o Unit 2: chapter 2, chapter 3,4.3,4.4
 - o Unit 3:4.6,4.8

Reference Books:

- Bernard Kolman, Robert Busby, Sharon Cutler Ross, Nadeem-ur-Rehman, Discrete Mathematics Structure Pearson Education, 5th Edition.
- William E. Boyce Edward and Richard C. Di Prima Elementary Differential Equations,

Board Of Studies	Name	Signature
Chairperson (HoD)	Ms. Gitanjali Phadnis	him phadus

Wiley Publication, 10th Edition.

Zukerman, The Theory of Numbers.

E-Resources:

- https://ocw.mit.edu/courses/mathematics/18-01sc-single-variable-calculus-fall-2010/1.-differentiation
- https://swayam.gov.in/
- https://nptel.ac.in/
- http://ocw.mit.edu

Board Of Studies	Name	Signature(In white cell)	
Chairman (HoD)	Gitanjali Phadnis	A. M. Phadyil	
Faculty	Vrushali Paranjpe	Opmyr 8 (2020	
Subject Expert (Outside SPPU)	Dr. Machchhindra Gophane	1/8/2020	
Subject Expert (other than Parent University)	Dr. Prashant Malavadkar	From V. 01-03-20	
VC Nominee (SPPU)	Dr. Vinayak Joshi	1/8/2020	
Industry Expert	Mr. Anup Manakeshwar	Denalcyhwar At	
Alumni	Ms. Jyoti Sharma	orlosizoro	

Board Of Studies	Name	Signature
Chairperson (HoD)	Ms. Gitanjali Phadnis	of mohading