Course: OE Graph Theory

Semester: II Credits: 2 Subject Code: OE2-22308 Lectures: 30

Course Outcomes:

At the end of this course, the learner will be able to:

- CO1 Know about the new branch of mathematics Graph Theory and its applications.
- CO2 Define trees and demonstrate different traversal methods for trees.
- CO3 Classify different types of digraphs and identify the areas of their applications.
- CO4 Describe and apply some important and useful algorithms for graphs.

Unit 1: Connected Graphs and Eulerian and Hamiltonian Graphs

15

- Introduction to Graphs Elementary Terminologies and Results, Handshaking lemma, Corollary of Handshaking lemma, Adjacen Matrix of a graph
- Types of graphs
- Walk, Trail, Path- Definition, Examples and Properties
- Connected graphs Definition and Properties
- Distance between two vertices, Eccentricity, centre, radius and diameter of a graph
- Isthmus, Cut Vertex- Definition, Examples and Properties, Edge connectivity, Vertex connectivity
- Dijkstra's Algorithm
- Konigsberg Bridges Problem
- Eulerian Graphs- Definition, Examples, Necessary and Sufficient Condition (with proof)
- Hamiltonian Graphs- Definition, Examples and Theorems (2 without Proof)
- Chinese Postman Problem, Travelling Salesman Problem
- Activity

Unit 2: Trees, Directed Graphs and Planarity

15

- Definition, Properties of Trees, Theorems on Trees (with proof)
- Spanning tree: Definition, Properties, Shortest spanning tree- Kruskal's Algorithm
- Binary Tree Definition and Properties.
- Tree Traversals Preorder traversal. In order traversal and Post order traversal
- Directed Graphs: Definition, Examples, Elementary terminologies and Properties.
- · Connectedness of digraphs.
- Networks and Flow, Ford Fulkerson Algorithm
- Planarity and coloring in graphs
- Assignment

Board of Studies	Department	Name	Signature
Chairperson (HoD)	B.Sc. Computer Science	Gitanjali Phadnis	G. M. Phadris
		1	02/06/2023

Recommended Text Books:

- Kenneth Rosen, Discrete Mathematics and its applications, Tata McGraw Hill, Seventh Edition.
- John Clark and Derek Holton, A first look at Graph theory, Allied Publishers.

Reference Books:

- Kolman, Busby, Rehman, Discrete Mathematical Structures, Prentice Hall
- C. L. Liu, Elements of Discrete Mathematics, Tata McGraw Hill
- Narsingh Deo, *Graph Theory with applications to computer science and Engineering*, Prentice Hall.
- Harary, Graph Theory, Narosa Publishing House Pvt. Ltd., New Delhi, 2013.

Websites:

- https://www.tutorialspoint.com/discrete mathematics/index.htm for Unit 1 to Unit 5
- https://nptel.ac.in
- · https://swayam.gov.in

Board of Studies	Name	Signature	
Chairperson (HoD)	Gitanjali Phadnis	G-uphaduis	
Faculty	Vrushali Paranjpe	Vnushali x3	
Subject Expert (Outside SPPU)	Dr. Prashant Malavadkar	2/6/24	
Subject Expert (Outside SPPU)	Dr. MachchhindraGophane	A 2/6/23	
VC Nominee (SPPU)	Dr. Borse Y. M.	moss of	
Industry Expert	Ms. Jaina Shah	Haira: Sorry	
Alumni	Ms. Mamata Choudhary	The comment of 24	

Board of Studies	Department	Name	Signature
Chairperson (HoD)	B.Sc. Computer Science	Gitanjali Phadnis	first Pharmis
	2		02/06/23